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An algorithm is presented for the solution of the time dependent reaction-diffusion
systems which arise in non-equilibrium radiation diffusion applications. This system
of nonlinear equations is solved by coupling three numerical methods, Jacobian-free
Newton—Krylov, operator splitting, and multigrid linear solvers. An inexact New-
ton’s method is used to solve the system of nonlinear equations. Since building the
Jacobian matrix for problems of interest can be challenging, we employ a Jacobian—
free implementation of Newton’s method, where the action of the Jacobian matrix
on a vector is approximated by a first order Taylor series exparRienonditioned
generalizedninimal reddual (PGMRES) is the Krylov method used to solve the lin-
ear systems that come from the iterations of Newton’s method. The preconditioner
in this solution method is constructed using a physics-based divide and conquer ap-
proach, often referred to as operator splitting. This solution procedure inverts the
scalar elliptic systems that make up the preconditioner using simple multigrid meth-
ods. The preconditioner also addresses the strong coupling between equations with
local 2x 2 block solves. Theintra-cell coupling is applied after the inter-cell coupling
has already been addressed by the elliptic solves. Results are presented using this
solution procedure that demonstrate its efficiency while incurring minimal memory
requirements. © 2000 Academic Press
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1. INTRODUCTION

A solution technique for multidimensional non-equilibrium radiation diffusion is pre
sented. The proposed algorithm couples three methods together to form one solution me
The three methods are Jacobian-free Newton—Krylov [1], operator splitting [2], and mL
grid solvers [3, 4]. Each will be discussed in detail below. Each of these methods has 1
strengths and weaknesses and this solution method tries to employ the strengths a
counter the weaknesses.
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This research builds upon earlier studies of Newton—Krylov solutions of the radiati
diffusion equations [5—8]. Developing nonlinearly convergent time integration methods
non-equilibrium radiation diffusion is arecent endeavor. In [5] a comparison of the Jacobi
free Newton—Krylov method with a Picard nonlinear iteration was done. It was demonstre
that the Jacobian—free Newton—Krylov method had superior convergence properties. |
a detailed time step convergence study was done comparing Jacobian—free Newton—K
with a method which does not converge the nonlinearity within a time step (the sta
quo in the application field [9]). The results clearly indicate that converging nonlineariti
produced a superior algorithm in terms of efficiency and accuracy. We also mention |
in addition to our work on equilibrium radiation diffusion [6], there has been other rece
work on equilibrium radiation diffusion using multigrid and converging nonlinearities [25

Although we focus on radiation diffusion, the proposed solution method should also
applicable to other physical systems where operator splitting is currently used as a st
such as the Navier—Stokes equations [10].

1.1. Jacobian-free Newton—Krylov methodNewton’s method is used to solve the cou-
pled system of nonlinear equations. In its exact form, Newton’s method provides quadr
convergence; however, due to approximations that are employed by the solution meth
this paper, super-linear convergence (nearly quadratic) is realized in practice. Historic
there have been two main obstacles which have prevented people from using New
method for large scale multi-physics applications. In the following we will try to show ho
each obstacle is overcome.

First, an initial guess inside of the radius of convergence is required for Newton’s mett
to converge. For steady state problems obtaining a good initial guess can require a signif
investment of work. In transient problems, however, the initial guess is simply the conver
solution from the last time step. If Newton’s method does not converge, by lowering
time step one can always get the initial guess as close as necessary to the solution
next time level. Because of this sensitivity to the initial guess Newton’s method provides
automatic measurement of the nonlinearity of the problem. In general one would like
Newton iterations to converge in a small number of iterations. If Newton’s method is taki
a large number of iterations the time step may be too large for accuracy. This automr
error estimate provides one method to control the time step size in a transient prob
Therefore, in transient problems getting an initial guess inside of the radius of converge
of Newton’s method is not a significant concern.

The second obstacle to using Newton’s method for large scale multi-physics simulati
is the formation of the Jacobian matrix. The Jacobian matrix can be a large matrix (r
equals the number of control volumes times the number of equations and the bandw
can get very large depending on the coupling between variables) which may be difficu
form. Even though forming the Jacobian matrix may be difficult, this approach has b
used successfully for large scale multi-physics steady-state simulations [11, 12]. Depen
on the amount of coupling between equations it may be very difficult to even determine
structure of the Jacobian matrix. Once you do know the structure, you are then faced
the task of computing the coefficients. To clarify discussion a brief overview of Newtol
method will be provided next.

Newton’s method solves the nonlinear system of equations,

F(x) =0, (1)

whereF is the nonlinear residual function (the discretized system of partial different
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equations) anda is the state vector. To solve this system, Newton’s method requires
solution of a series of linear systems of the form

JKexk = —F(x9). 2)

HereJ is the Jacobian matriX§x* is the update to the state vector for ti@ nonlinear
iteration, andk is the nonlinear iteration index. Upon the solution of each of these line
problems the nonlinear iteration is advanced by

X<HL = xk 4 déxk, ()

whered is a damping parameter used to expand the Newton radius of convergence.
iteration is continued until

IF(x) 12 < toly, 4)

wheretol, is the nonlinear convergence criteria and in these stuiolies: 1.0 x 10~ unless
otherwise noted.

The coefficients of the Jacobian matrix are derivatives of the residual with respect to
dependent variables,

j _ R (x9)
b axk
J

®)

For large nonlinear multi-physics systems, computing these coefficients can be diffic
These derivatives can be computed analytically, or using a algebraic symbolic manipul
or numerically. All of these options present challenges.

The solution technique we use provides a way around this problem. In a Krylov lin
solver the solution is built from a linear combination of matrix vector products,

1-1
6x* =Y ajdlro, (6)
j=0

wherer is the initial residual to the linear problem, thags are the coefficients constructed
by the Krylov method, andl is the number of Krylov iterations. The important thing to
note is that the Jacobian matrix itself is never needed for the Krylov solution. The o
Jacobian information required in the Krylov solution is the product of the Jacobian ma
and a vector. This Jacobian-matrix-vector product can be approximated using a first c
Taylor series expansion [5], which results in the approximation [1, 13]

Fx+ev) —F()
6 9

Jv (7)

wherev is some Krylov vector and is a small perturbation computed from the equation

¢ — bZiN:l Xi

Niviz ®)

whereb=5.0 x 10°8 is approximately the square root of machine round-off. The use
Eq. (7) requires a complete nonlinear residual evaludt{@n+ ¢v) on each Krylov iteration
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(note, F(x) is already known). Therefore, it is important to keep the number of Krylo
iterations per Newton iteration small for computational efficiency. If the number of Krylc
iterations gets large enough, it will be more efficient to build the Jacobian matrix. As will
shown under Results, for the transient radiation diffusion, the number of Krylov iteratic
per Newton iteration is approximately ten or less.

The two main historical obstacles to using Newton’s method have been addressed b
proposed algorithm. To get an initial guess inside of the radius of convergence, one
to simply lower the size of the time step. Instead of building khe N Jacobian matrix
(whereN is the total number of unknowns) simply approximate its action Witfunction
evaluations using the Jacobian-free approximation. This approximation of the action of
Jacobian matrix must be applied on each Krylov iteration.

Additionally, to improve the efficiency of Newton’s method, we use an inexact Newtor
method [14]. When the Newton iteration is “far” from convergence (i.e., the residual
“big”) there is no reason to spend a large amount of computer time solving the lin
system accurately. However, when the Newton iteration is “close” (i.e., the residua
“small”) the convergence rate of Newton's method is tightly coupled to the accuracy
the linear solution. To adjust the amount of work done in the linear solve (convergel
tolerance) we employ an inexact Newton's method. In the inexact Newton’s approach
convergence criteria for the linear solver is proportional to the residual in the nonlin
iteration. In equation form this is

19K6x + F(<)|| < tolo[F(X9) I, 9)

wheretol, = 1.0 x 1072 is the value used in this study unless otherwise noted.

The Krylov solver used in this solution technique is treconditionedgeneralized
minimal reddual (PGMRES) method [15]. PGMRES is a non-symmetric solver who:t
convergence rate depends on the eigenvalues of the matrix not the matrix structure. ¢
we never form the Jacobian matrix, we cannot employ a solver which depends on a m
structure that we may not know. Another advantage of PGMRES is that its residuals
monotonically decreasing. This means that on each iteration the error gets smaller (mea:
in an appropriate norm). A third advantage of PGMRES, which is important to the use
the Jacobian-free approximation, is that it normalizes the size of the Krylov vectors whic
uses. Since the error in the Taylor series expansion (Eq. (7)) is proportional to the size o
Krylov vector ), the Jacobian-free approximation works well with PGMRES where tt
Krylov vectors are of size unity. Another motivation for keeping the number of PGMRE
iterations small is evident in Eqg. (6). Since each new Krylov vector is orthogonal to all
the previous Krylov vectors, the amount of work required to find a new vector increa
with the number of Krylov iterations.

The drawback to using PGMRES is that it requires the storage of one additional Kry
vector (whichis the same size as a state vector) per Krylov iteration. It is this property wt
enables PGMRES to obtain its monotonic error reduction for non-symmetric systems.
impact on the solution algorithm is that the storage requiremekt Ns where M is the
maximum number of Krylov iterations required to converge.

There is an approach called restarting which tries to keep the amount of storage
PGMRES constant. In this strategy the number of Krylov vectors is fixed and the lint
iteration is restarted when the fixed dimension of the Krylov subspace has been reac
This approach minimizes the memory requirements, but does not ensure the monotoni
decreasing residuals or even convergence.
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If the restarting strategy is not employed, to keep the Krylov vector storage requ
ment from becoming impractical, one has to keep the number of Krylov iterations Ic
This is accomplished by preconditioning the system. Preconditioning is a process wi
approximates the inverse of the Jacobian mathix ¢ ~ ). Now instead of solving

J6x = —F(x), (10)
one solves the system
IPIPéx = —F(x). (11)

Since PGMRES works on the number of unique eigenvalues of the system, if the new sy:
JP~! has most of it eigenvalues clustered around one, then PGMRES will need very
iterations to reach convergence. Therefore, the problem of using PGMRES, which is
storage of the Krylov vectors, can be minimized by using an effective preconditioner.

1.2. Operator split (fractional time step, alternating block factorization) preconditior
ing. If one had the Jacobian matrix built, an obvious choice for a preconditioner is
approximate inverse of the Jacobian. Since we do not wish to build the Jacobian matrix
can be more creative in our construction of the preconditioner. One of the motivations
preconditioning the system is to save memory by reducing the number of Krylov vect
that need to be stored. Therefore, it is important that the preconditioning process itse
not memory intensive.

Before further discussion, one needs to define two terms for clarity. In the followi
discussions “coupled systems” will refer to matrices which have an order equal to the nur
of equations per control volume times the number of control volumes. “Scalar equatic
will refer to systems which have an order equal to the number of control volumes.

One approach to producing a preconditioner that is not memory intensive is to empl
numerical technique which was developed when computer memories were relatively s
and computers were relatively slow. In the early days of computational physics the nume
technique of operator splitting [2] (or fractional time step methods [16] or alternate-blc
factorization [17]) was the main work horse for the solution of coupled systems. T
approach reduces the memory requirements and the computational complexity of sol
a system of equations. This is accomplished by solving each scalar equation independ
on the entire grid and then coupling these solutions back together to get the solution tc
larger coupled system.

For example, if one has a system witltontrol volumes andan equations per control
volume (N =mn) the total system size imin x mn. The storage required for this system
is mnL whereL is the number of nonzero diagonals for the larga x mn system of
equations. Assuming a lexicographical ordering of the unknowns, the number of non:
diagonals is the number of variables touched by the stencil (i.e., approximately equal tc
number of variables per cell times the number of cells in the differencing stencil). Howe
if you solve the systems one equation at a time your storage requirementswrerel < L
is the number of nonzero diagonals in each ofrthemallern x n systems. This memory
reduction is realized since the same memory locations can be used to solve eacimof t
equations. One can see that the memory savingglis'|).

Since the amount of work required to solve a system scales greater than linearly witt
size of the system, one can clearly see that the work for one large system is proportior
(mnb* wherea > 1 is the exponential power for solving systems. The work for solvin
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them smaller systems is proportional ma(nl)*. This results in a computation complexity
reduction ofm@=Y(L/1)*. For the one-dimensional studies presented lates2 and
n=>50 orn=200.

The exact details of how to construct the operator split preconditioner will be shown
a later section. The basic idea however is to:

1. Employ a simple Picard linearization to linearize the the nonlinear discretized s
tem of partial differential equations.

2. Order the equations so that there is adequate coupling between them.

3. Solve the equations one at a time using the most recent value of variables avail:
Physics-based preconditioning is the application of this idea as a preconditioner |
Newton—Krylov method and refers to the splitting of the solution process based on diffel
types of physics (e.g., transport-diffusion physics versus equilibration-reaction physics

As solution technigues, thesegle-steperator split methods are often robust but art
only as accurate as the linearization approximations. When used as a soh&nglee
stepoperator split algorithms must take time steps small enough to keep the lineariza
approximations “accurate.” Since the nonlinear residu&eq)] are never formed, the true
accuracy of the solution is never measured as part of the solution procedure.

It should be noted that operator split algorithms can also be applied in an itenatiite,
stepfashion as a solver or as a multigrid smoother. When employed in this fashion, oper
splitting may not be robust since convergence is not guaranteed. As a preconditioner, |
ever, the outer Newton iteration handles the nonlinear error so the operator split algori
can be used at larger time steps. By using operator splitting as a preconditioner, we
advantage of its reduction in memory requirements and its reduction in computational ¢
plexity, but we are not forced to take the small time steps required for accuracy since
Newton iteration significantly improves the accuracy of the problem for a given time st
[5]. Therefore, when an operator split algorithm is used as a preconditioner for Newtt
Krylov, Newton—Krylov can be considered to be an accelerator of the convergence of
operator split method.

1.3. Multigrid. In the current application, the operator split algorithm produces a s
of linear, elliptic, scalar equations that need to be solved. The multigrid technique v
initially designed for use on scalar elliptic equations so it is an obvious choice to use :
solver. However, because the system is so small in the one-dimensional problem, a si
symmetric Gauss Seidel iteration is used. For the two-dimensional problems the multi
method is used as a solver. The algorithmic scaling of the multigrid method makes i
attractive choice for a preconditioner since one can get solutions to large problems quic

The multigrid preconditioner used in this study was developed in [18]: The restriction
prolongation operators employed here are piecewise constant and a variational coarst
operator is used. Although these choices may not be optimal for multigrid as a solver,
have found it to be an acceptable approach when using multigrid as a preconditioner. T
are three advantages to choosing piecewise constant prolongation and restriction oper

1. They are the easiest to implement.

2. They do not have difficulties with irregular meshes.

3. They are simple to implement as a two-level solver in parallel [19] since th
minimize communication costs.
The multigrid preconditioner uses a simple “V” cycle and incorporates symmetric Gal
Seidel as a smoother. From our experience, we have not seen the advantage in CPL
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reduction from using more advanced multigrid strategies. Since PGMRES is the lir
equation solver and the equations used in the preconditioner are not the same as the eqL
being solved, it is not clear that there is an advantage to using more accurate linear sc
in the preconditioner. Implementing more sophisticated multigrid strategies and measu
their effects on CPU time and convergence is an area of future research.

In this solution technique, Newton’s method handles the nonlinearities and the Kry
solver handles the coupled systems. We are applying the multigrid algorithm in the pre«
ditioner where the problem has already been broken up into linear, elliptic, scalar piece
operator splitting. Therefore, in this solution technique, multigrid is applied in situatio
where its algorithm is near optimal.

2. PHYSICS MODEL

The following coupled system for radiation enerdy, and material temperaturd,,
will be solved using the solution technique of this paper. These equations represer
idealization of non-equilibrium radiation diffusion in a material [2, 5, 6, 9, 20, 21],

radiation diffusion (gray approximation),

oE

E—V-(DrVE)zoa(T“—E); (12)
material energy balance,

T

aa—t — V.- (DVT) = —0a(T* — E). (13)

Hereo, is the photon absorption cross-section. In thermal equilibrium we Eauel 4,
and for the non-equilibrium case one can define a radiation temperaftire-a&)%2°. We
will choose

23
=73
wherezis the atomic mass number and we use the following form for the radiation diffusi
coefficient,

(14)

Oa

1
D (T) = —. 15
r(T) 30 (15)
However, in regions of strong gradients, simple diffusion theory can fail, resulting ir
flux of energy moving faster than the speed of light. To prevent this artificial behavi
the diffusion coefficient is augmented in the following heuristic fashion, referred to as f

limiting [2],
1
(30a+ (1/E)[dE/OX|)

D/(T,E) = (16)

The following form of the material (plasma) conduction diffusion coefficient from Spitz
and Harm [22] is used,

Di(T) = kT%?, (17)

wherek is a constant.
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3. DEVELOPMENT OF AN OPERATOR SPLIT (PHYSICS BASED) PRECONDITIONER

Since the operator split method is a proven solver, it seems obvious that it might t
good preconditioner. To describe the operator split solution method we will work with t
one-dimensional version of the problem,

9E 9 [ OE
W ooy ) =mate a8
T o (_ 0T

For simplicity we assume constant spacing and define the following dependencies bet\
the diffusion coefficients and the photon absorption cross section,

Dtz = Dr (ENE e T,) (20)
Dtn.i+4}1/2 = D¢ (P”Iﬁz) (21)
ot = oa(TH). (22)

Here the superscript+ 1 indicates a new time or implicit value and the subsdérg#notes

a control volume centered quantity and the subscripfl/2 denotes a control volume face
guantity. Then the fully implicit, fully nonlinear, finite difference forms of Egs. (18) an
(19) are

1 1 1 1 1
B -E DNl Bl —EN DN+ S =
At ri+1/2 ri—1/2 AX2

AX2
_ G;-irl[(-l—inﬂ)‘l . Ein+l] -0 (23)
T [Dm (Tiltl - Ti”“) _ (TJ‘“ - Ti”tl)}
At ti+1/2 Ax2 ti—1/2 Ax2
+op (T - Y] =o. (24)

The first step in our operator split method is to apply a Picard linearization to the nonlin
equations. We linearize Eqgs. (23) and (24) by evalualbingD;, ando, at old time values
and by linearizing T™1)* as(T")3T ™! to get

EM B [ El - BN n EM - BN
—at _Dr,i+1/2 a2 ) P\ T

—on [(TN)° T —EMY =0 (25)
TinJrl_Tin B -Dn. -I—irl-g_l_-l—in+l B Dn- -|—in+1_-|—in_+ll
At [Pvme\ T Al ti-y2\ T Ay

+op [(TM)°T™ — EMY =0, (26)

These are the linearly implicit, discrete equations. Under Results the operator split pre
ditioner will be compared to a Picard preconditioner. The Picard preconditioner solves
couple system of Egs. (25) and (26) with a block symmetric Gauss Seidel iteration. Tt
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equations will next be used to develop the operator splitting approach as a solver anc
preconditioner.

3.1. Operator splitting as a solver.To demonstrate how to use operator splitting as
preconditioner, we will first show how to use it as a solver. This step is done first since m
readers have already used operator splitting as a solver. Operator splitting solves the co
system in a two step process. First the system is linearized using the Picard lineariz:
yielding a coupled linear system. Then this coupled system is broken up into three sep:
pieces (radiation diffusion, material heat conduction, and energy exchange coupling).

The first step in our physics-based operator split algorithm is to solve the radiation tre
port (diffusion) physics of Eq. (18),

dE 9 0E
— ——(Dr— ) =0. (27)
at axX axX
The resulting finite difference form of Eq. (27) is taken from Eq. (25),
E E-E,

ELF
E -E Dlliv12=a =~ Dricie~x™ =0 (28)
X AX '

Here we have defined an intermediate energy |&7el
The second step in our physics-based operator split algorithm is to solve the mat
thermal transport (diffusion) physics of Eq. (19),

oT 0 oT
— —— | Di— | =0. (29)
ot aX X

The discretized form of Eq. (29) comes from Eq. (26),

T = T"  [Dlipap((Te = T/AX) = D p((T* — T7y)/AX)
At AX

}:a (30)

HereT* is an intermediate material temperature level.
The third and final step in our physics-based operator split algorithm is to solve
equilibration radiation coupling (reaction) physics from Eqgs. (18) and (19),

E
E =0a(T" - E) (31)
oT B 4

This results in a coupled 2 2 matrix for each control volume. The discretized equation
which make up the % 2 systems are parts of Egs. (25) and (26). The discrete equations

_n+1 _ *

BB (- e @)
-n+1 _ T

T o ()T - ). @)

As a solver, our operator split solution algorithm follows:

1. Solve Eq. (28) foE*.
2. Solve Eg. (30) fofl *.



752 MOUSSEAU, KNOLL, AND RIDER

3. Substitute the values f&* andT* into Eqgs. (33) and (34).
4. Solve the resulting 2 2 system on each control volume to g™t andT"+1.

Next we will express the operator split solution algorithm in matrix notation. This will b
necessary when discussing the operator split procedure as a preconditioner. We can re
Eq. (28), which is step one in our solution scheme, in matrix form as

EI’]
PiE* = —. 35
E = — (35)

It is important to note that the linear operafyris of ordern. Equation (30) (the second
step in the solution algorithm) can be expressed in matrix form as

Tr'l
PT* = —. 36
2 AT (36)

The same as fdP, the linear operatdp, is of ordem. Equations (33) and (34) (steps 3 and
4 of the solution scheme) can be represented as the following black @agonal matrix

equation,
En+1 %
Popos) = ( - @)

At

As opposed to the scalar operat&sand P, the coupled linear operatd; is of order
2n. The operatoP; is applied cumulatively to correct the error associated with the stror
coupling within a cell whichP; andP, did not address. By solving thg system (Eq. (35))
for E* and theP, system (Eq. (36)) fol * and substituting into th€; system (Eqg. (37))
we get

P 0 En+ at
G- -
2 At
If we defineO by
Py O]
0= AtPs, (39)
[0 P2 °

we can then write our operator split method in matrix form as

En

n+1
o(in;) = (i) . (40)

At

3.2. Operator split in incremental form.We will now explain how to get our operator
split solution method into the correct form for use as a preconditioner. Recall the b
equation for Newton's method,

JKexk = —F(x¥). (41)
This equation is solved faix* and then the solution is advanced by

XL = XK déxk. (42)
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Therefore, one can see that Newton’s method solves for the chang&am nonlinear
iterationk to k 4+ 1. However, when used as a solver, our operator split method solved
the new time valuex™*1), not the change i from time leveln to n+ 1. Therefore, one
has to rework the normal operator split method into incremental form so it can be use
a preconditioner for Newton’s method.

The first step in converting our operator split algorithm into incremental form is to defi
the residual functions for use in Newton’s method. From the fully implicit, fully nonlinea
finite difference form (Egs. (23) and (24)) we can define the residual functions

& — EP 1 —&
Fe(E,T) = N {Dr (5i+1/2, Ti+1/2) (JFAIT)
& —& 4 entl
— Dy (&i-12, T-1/2) (A)@)] —oa(T) [(T)* — &MY (43)
T —-T" Tia—Ti T —T-
Fr(€,7T)= A {Dt (Ti1102) <+A1X2> — Dt(Ti-1/2) <szlﬂ
+oa(T(T)* - &, (44)

where€ and7Z are dummy radiation energy and dummy material temperature, respectiv
It is now important to note that

[ EN, — EP E"—E"
Fe(E", T") = __ rn,i+1/2 I+ZX2I> - Dpvil/2<lAX2Il>]
4
o, [(T)" -~ &Y “9)
r T, —T" T -T"
Fﬂ?ﬁ%=—P&wzJ%QLJ_D&U4LKﬁJH
4
+o, [(T)* - E7). 9

These residualdg(E", T") andF(E", T"), will be important and will come up in the
future.

First, we will make the definitions

SE = EM* — B! (47)
STy = TN — TN, (48)

Then, recalling the definitions of the residuals (Egs. (45) and (46)), we can rewrite Eqgs.
and (26) in incremental form to get

SEi [ 8Ein —8E\ _ SE; — 8E 4
E_ I ri+1/2 T - Yri-172 T

— o [(T)8T, — 8Ei] = —Fe(E", T") (49)

8T, _Dn 8Tip1 — 4T Dn 8Ty —8Ti1
ar e\ T e ) TR T e

+ol [(TN)°8T — 8E] = —Fr(E", T". (50)
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From the definition 0D in Eq. (39), it is easy to see that Egs. (49) and (50) can be rewritt

in matrix form as
—Fg(E", T
o %) = eELTHY (51)
6T —Fr(E", T

Also, it is clear that we now have the operator split preconditioner in the same form as
Newton iteration matrix,

J6x = —F(x), (52)

which makes it trivial to apply as a preconditioner as is demonstrated below.

3.3. Operator split preconditioner implementatiorNow that we have the operator split
solver in the same form as the Newton iteration, we can proceed to use the operator
algorithm as a preconditioner. There are slight modifications that need to be implemente
use the algorithm as a preconditioner. First, the right hand side (i.e., the residuals evalt
at old time values) is not constructed. The right hand side is now provided by the Kry
solver and is a Krylov vector instead of a residual vector. Second, instead of using the
time valuesE" andT") to evaluate the matrix elementsia, P,, andP3, these coefficients
are now constructed from the latest nonlinear iterate veffifeaid T¥). The following
describes in detail how the preconditioner is implemented.

Recall the definition of right preconditioning (Eq. (11)), but now replace the gene
preconditioneP with the operator split preconditionér to get

JO106x = —F(x). (53)
Definez= 0éx and we can rewrite Eq. (53) as
JO 1z = —F(x). (54)

To solve the above system, we need to compute the action of the d@trixon a Krylov
vectory,

w=JO 1v. (55)

Computationally this is done in a two step procedure.

1. SolveOq =V for g (using Eq. (51)).
2. Computew = Jq using the Jacobian-free approximation,

_ F(x+e€q) —F(x)
—_—

Jq (56)

This procedure is used each time the action of the Jacobian matrix is needed. Aftel
Krylov method has converged on a solution #pthe last step is to solve

06x = z, (57)

for 6x. Now that we have described how to construct and implement the operator s
preconditioner, we will demonstrate its performance.
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4. RESULTS

The operator split preconditioner will now be demonstrated on three separate test
lems.

1. The one-dimensional problem that was used to demonstrate the construction o
operator split preconditioner. In this section the operator split preconditioner will be cc
pared to the coupled Picard based preconditioner. Results will show that the two approz
behave similarly.

2. A two-dimensional problem with the same one-dimensional physics as the ©
dimensional problem. This problem will be used to demonstrate the scalability of the oj
ator split preconditioner. Results will show that the method scales very well with probl
size.

3. Atwo-dimensional problem with two-dimensional physics. This problem was ch
sen to demonstrate the two-dimensional capability of the solution method. By making
atomic numberz, a function ofx andy we were able to create a region with a lower radia
tion diffusion coefficient. By modifying the ratio of high to low atomic number in the tw
dimensional “blockage” we were also able to demonstrate how the method behaves \
faced with a strong spatial dependence of the radiation diffusion coefficient. Results s
that the method works just as well in two dimensions as it did in one dimension. Res
also demonstrate that as the discontinuities in the matrix coefficients become large (ce
by the blockage), the effectiveness of the preconditioner is negatively impacted.

It is of some interest to compare the solution based on the Picard linearized cou
system to the nonlinear Newton—Krylov approach. In general, as the problem beco
more nonlinear and as the required accuracy is tightened, the Newton—Krylov met
outperforms the Picard method. For more detailed results see [5].

4.1. Problem 1: One-dimensionalThe model problem considered in this study is take
from [5, 23] and consists of a unit radiation flux impinging on an initially cold slab of un
depth. This results in mixed, or Robin, boundary conditions for the radiation equation
x =0 andx = 1. Following [24], atx = 0 we use

1 1 0E
TE- — — =1, 58
4 6o, 0X (58)

and atx =1 we use

1 1 9E

2 E+ Bon Ox 0 (59)
For the material diffusion equation the boundary conditions are sir%\blyo atx=0
and x =1. The initial energy isEq=1.0 x 10~° and the initial material temperature is
To= (Eg)/*~5.62 x 10~2. The atomic numbez is constant and equal to 1.0 everywhere
The simulation runs for three units of timénie; = 3.0).

The first set of results show the effect of the diffusion coefficient on the solution to t
problem (see Fig. 1). Here the constlkig varied in Eq. (17) to show the effect that materia
conduction has on the solution. Itis clear that an increase in the material diffusion coeffic
causes the thermal front to move faster. Note that the material temperature never ex
the radiation temperature.
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FIG. 1. Effects of thermal diffusion.

Inthe following, a comparison is made between the Picard preconditioner and the opel
split preconditioner for different thermal wave CFL numbers [7]. The basic idea of a therr
wave CFL number is to assign a wave speed to the thermal wave and then base a CFL nt
on this wave speed. For example, if the CFL number is one, the thermal wave cross
computational grid cell in one time step. For athermal wave CFL number of 0.1, the ther
wave takes ten time steps to cross a computational cell. We are using a fixed time step
a time step ramp which brings the initial time step up to the fixed value in a small numl
of time steps. The ramp helps the calculation through the initial startup of the simulati
Because of this ramp and the changing velocity of the thermal wave front, the statemei
CFL is an asymptotic approximation.

To compare different approaches we partition the computational work into the piece

times Newton PGMRES

WORKx N x x time_stepx - X i
time.step  Newton

(60)

In this equation, final timetifmey ) is usually fixed by the problem definition so the number:
of interest are the number of unknowns (redhl= nm, wheren is the number of cells and
mis the number of equations per control volume), time step gitg Newton iterations per
time step %p) and PGMRES iterations per Newton iterati@ﬁé'%ﬁ. In this paper all
CPU times are presented as seconds of silicon graphics incorporated, octane computel
Table | shows a comparison of the operator split preconditioner to the Picard based
conditioner for a problem with fifty control volumes. In the Picard based preconditior
the linearized coupled system (Egs. (26) and (25)) is solved using2#ock symmetric
Gauss Seidel iteration. The complexity and the storage requirement for the Picard lineat
preconditioner (which is already smaller and simpler that a true Jacobian based prec
tioner) is higher than the operator split based preconditioner, but one can see from Ta
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TABLE |
Operator Split vs Picard for n =50

Picard Operator split
P ro b Ie m i E.:ng p P!\?eh\:]v?ois C P U ti x:wsg ] P,\(‘-‘vemEnS C P U
k=0.0 CFL=0.1 2.379 2.845 0.9 2.403 3.456 11
k=0.0 CFL=1.0 4.678 6.725 0.4 4.750 7.390 0.4
k=0.1CFL=0.1 2.088 2.586 1.0 2.117 3.337 11
k=0.1CFL=1.0 4.160 5.403 0.3 4.160 5.978 0.4

that even as the thermal diffusion coefficient is varied and the CFL numbered is variec
two methods perform almost identically.

In Table I, one can clearly see that increasing the nonlinearity of the problem, by rais
the time step size an order of magnitude (CFL from 0.1 to 1.0), approximately doubles
number of Newton iterations per time step and also approximately doubles the numbe
PGMRES iterations per Newton iteration. This indicates that both the nonlinear and
linear problems are more difficult when the time step is increased.

It should be noted here that the predicted run time speed-up of the operator split prec
tioner was not realized in this study. This may be simply because the run time analysis
asymptotic and the one-dimensional runs done here were too small to show the asymy
behavior. It also may be that the second step of the preconditioner implementation
action of the Jacobiaw = Jq) may be using a significant amount of CPU time relative t
the CPU time required to evaluate the action of the preconditiddg v).

The effect of changing the material diffusion coefficient in Table | is similar. Here il
creasing the material diffusion coefficient both lowers the number of nonlinear iterati

inaso) and the number of linear iteration§MRES

In Table Il the same study is repeated for a grid which is four times as large. One obse
that the performance of the methods (measured by the number of Newton iterations
time step and the number of PGMRES iterations per Newton iteration) is very simi
Once again increasing the CFL number increases both the linear and nonlinear iterat
However, increasing the material diffusion clearly lowers the nonlinear iterations, but th
is now no longer a clear trend in the linear iterations.

4.2. Problem 2: Two-dimensional with one-dimensional simulatidrhe test problem
for this subsection is similar to the one-dimensional problem. The computational don
ranges from G x <1 and O< y < 1. The boundary condition for the radiation equation a

TABLE Il
Operator Split vs Picard for n =200

Picard Operator split
Problem meser  hewon  CPY @eSe Newes  CPU
k=0.0 CFL=0.1 2.057 3.825 14.4 2.053 4.115 16.0
k=0.0CFL=1.0 5.136 10.341 75 5.499 9.990 8.4
k=0.1 CFL=0.1 2.009 4.225 18.5 2.008 4.603 20.4

k=0.1 CFL=1.0 3.727 9.708 6.2 3.687 9.018 6.1
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the left boundaryx =0, y € [0, 1]) is

1 1 0E
-E-——=1. 61
4 60, 0X (61)
At the right boundaryX =1, y € [0, 1]) we use
1 1 JE
-E+——=0. 62
4 + 60, 0X (62)
At the top and bottom boundarieg£ 0 ory =1, x € [0, 1]) the boundary conditions are
oE
— =0 (63)
ay
For the material conduction equation the top and bottom boundaries are
T
— =0, 64
oy (64)
and the left and right boundaries are
oT
— =0 65
™ (65)

The initial conditions are the same as in the one-dimensional runs, the initial energ
Eo=1.0x 1075, and the initial material temperature T = (Eq)# ~5.62 x 10-2. The
atomic numbere is constant and = 1.0 everywhere. The two-dimensional simulation alsc
runs for three units of timetimes = 3.0).

Figure 2 shows a contour plot of the material temperature at time equal to three. From
plot one can see the step gradient near0.8. Also, the zero gradient boundary conditions
in both the radiation and material conduction equations is evident in the straight vert
lines of constant temperature.

“O T T T T [ T
i 5 L 5 2 || _
= < @ s D
o
L 2 J
=)
0.8 _
0.6 _
0.4 — = —
L = = 8 = o |l B
L + ? s | 3B 4
0.2 —
0.0 . . . | . . . | . . . | L . L
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. Material temperature.
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TABLE 11l
Grid Convergence Study CFL= 0.1

Grid At ti mee‘fggp Pl\?e’\\:?ois CPU
32x 32 1.272 2.008 4.691 29.1
64 x 64 6.673 1.981 4.819 366.5

128x 128 3.@ 1.392 4.948 2356.5
256 256 1.3 1.016 4.966 15917.0

Table Il shows a mesh convergence study for this one-dimensional problem solve
two dimensions. In this study the thermal wave CFL number is held approximately ec
to 0.1 by cutting the time stepAg) in half each time the mesh spacing is cut in half. Ir
Table Il one can see that the number of Newton iterations per time step falls throughou
mesh refinement. Simultaneously, the number of PGMRES iterations per Newton itera
is approximately constant (slightly increasing). This results in a total run time which sce
by slightly less than eight. (Note: this scaling does not hold for the coarsest mesh case.
may be because of cache effects which artificially speed up the smaller problem.) If
amount of work is constant (i.e., the same number of Newton iterations per time step an
same number of PGMRES iterations per Newton iteration) the CPU time will scale roug
by eight (two for the increase in thedirection, two for the increase in thedirection, and
two for the halving of the time step).

Table IV shows similar results for the CRL0.5 case. Comparing Tables Il and IV
one can see that increasing the time step by a factor of five increased the nonline
(as evidenced by the increase in the number of Newton iterations per time step). Alsc
number of PGMRES iterations per Newton iteration increased from approximately five
approximately nine. However, the trends in Table IV are identical to Table Ill. The PGMRI
iterations per Newton do not increase with grid size and the total amount of CPU time sc
slightly less than a theoretical value of eight (again ignoring the first grid).

Figure 3 shows the Mesh convergence results for a one-dimensional slice taken dow
middle of the two-dimensional domain. The plot shows the Radiation temperature at t
3.0 for four different grids. Two observations can be made from this plot. First, it is cle
that the solution is converging upon mesh refinement. Second, one can see that the gr:
aroundx = 0.8 gets steeper with the mesh refinement. For the 32 grid problem, the
simulation has difficulties resolving the steep gradient at the thermal wave front. This
cache effects may explain why the CPU time scaling does not hold for the first grid.
Table V, one can see the L-2 norm of the distance between the material temperature
the coarser grids and the 25856 grid. Here the ratio of the error terms is slightly les:
than the theoretical value of four (second order in space and half the grid size). This ma

TABLE IV
Grid Convergence Study CFL= 0.5

G ri d At ti xiwst:p Ph?e’\\:‘/?ois CPU
32x 32 6.0272 3.352 8.921 20.3
64 x 64 3.2 3.214 9.092 282.5

128x 128 1.2 2.755 9.092 1973.3

256x 256 7.%°° 2.151 9.094 13893.3
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FIG. 3. Radiation temperature mesh convergence.

related to the temporal error term which is first order so the overall theoretical value wo
be two. The convergence analysis of the data is done for the material temperature ins
of the radiation temperature since the material temperature has a smoother profile.

4.3. Problem 3: Two-dimensional with two-dimensional simulatioro clearly demon-
strate the two-dimensional capability of this solution scheme, a second two-dimensi
problem is constructed. In this problem, the initial conditions, the boundary conditions, :
the total run time are exactly the same as in the first two-dimensional run. However, tt
is now a region in the simulation where the atomic numbeés not equal to one. More
precisely,

(66)

S, 5.0 if%fxg%and%gyg%
1.0 otherwise

Table VI shows the solution algorithm performance under mesh refinement for the k
two-dimensional geometry problem. In Table VI one can see that the number of New
iterations per time step decreases the same as in the one-dimensional test problem. Ho\
instead of the flat number of PGMRES per Newton iterations that was clear in the o
dimensional test problem, the number of PGMRES iterations per Newton iteration actu

TABLE V
Material Temperature Mesh Convergence

Grids Error||AT |, Ratio
32-256 0.6992 NA
64-256 0.1997 3.50

128-256 0.0524 3.81
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TABLE VI
Grid Convergence Study CFL= 0.1

Grid At ti mee‘fggp Pl\?e’\\:?ois CPU
32x 32 1.2 1.991 4.684 22.3
64 x 64 6.673 1.185 4.339 152.0

128x 128 3.@ 1.001 3.890 1074.9
256 256 1.3 1.000 3.720 11550.6

decreases. It should be noted here that there is a slight discrepancy in the timing
Because of the initial strength of the transient (full energy being added to a cold material)
time steps for these simulations start out small and are then ramped up to their maxir
time step size. This ramp takes place over approximately fifty time steps. The statistic:
the average Newton iterations per time step and the average PGMRES iterations per Ne
iteration do not include the work that is done on the time step ramp. However, the C
time information includes the work done during the ramping of the time step. Looking
the CPU time for the 25& 256 run in Table VI, one can see that even though the number
Newton iterations per time step goes down as does the number of PGMRES iteration:
Newton iteration, the increase in run time is greater than the theoretical value of eight. -
anomaly appears to be associated with the amount of work necessary to get the simul
through the initial transient.

To understand this data one must consider two important gradients that need to be res
in this problem. The first one has no physical meaning and is simply an effect of
discretization. In the boundary conditions for this problem, the energy flux into the left w
is constant. The initial condition for this problem is the material is initially cold. Therefor
under mesh refinement the initial constant energy flux is being imparted into a smaller
smaller initially cold cell. This makes the start of the problem more difficult as the me
spacing is decreased.

The second gradient which is important to consider is the gradient in the diffusion coe
cient. From Egs. (14) and (15) one can see hais proportional tol andz or in equation
form,

(67)

The temperature across the interface at the thermal wave front drops by about a fact
ten. If the atomic number varies by a factor of ten between two different materials (as is
case in Fig. 4) the total change in diffusion coefficient (if these two differences occul
the same location) will be (807 = 1CP. This is clearly evident in Fig. 4 where the contours
of logo of constant diffusion coefficient vary from1 in the “hot” low z area to—7 in
the “cold” high z area. Here the diffusion coefficient varies over six orders of magnitu
in a very small spatial distance. Therefore, as the mesh is refined the ability to resolve
six order of magnitude drop improves. This may be the explanation for why the numbe
PGMRES iterations per Newton iteration decreases for this problem.

To investigate this phenomenon further the data in Table VII were generated. For
study the effects of grid spacing are removed by fixing the mesh ak 1Z8. In Table VII
one can now see clearly that as the gradient in diffusion coefficients steepergdtioe
increases) the amount of work that PGMRES requires to solve the linear system incre:
This is illustrated in Figs. 5 and 6.



TABLE VII
Atomic Number Study CFL ~ 0.1 Grid 128 x 128 At=3.0 x 1072

Z number zZ3 “2‘2"5‘[’2’) POMRES CPU
1.25 1.95 1.001 3.316 1063.4
2.5 15.62 1.001 3.368 1084.6
5.0 125.00 1.001 3.890 1072.5
7.5 421.87 1.001 5.157 1760.6
10.0 1000.00 1.001 11.846 3933.2
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FIG.5. Material temperaturez number ratic=2.5.
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FIG. 6. Material temperaturez number ratic=10.0.

In Fig. 5 one can see the material temperature contours far iienber ratio of 2.5. A
zratio of 2.5 results in a diffusion coefficient difference of (2.5)15.625. In this run, the
high z material slows the the thermal wave but the actual shape of theztsighare is not
evident.

In Fig. 6 thez ratio is increased to 10. The difference in the diffusion coefficient fc
this case is (18)= 1000. Here the thermal wave front is radically slowed which causes
additional steepening of the diffusion coefficients due to the sharp thermal gradients.

5. CONCLUSIONS

A physics-based preconditioning approach based on operator splitting has been desc
This approach allows one to use well developed technology to construct a preconditi
for a fully coupled, fully implicit, solution. Because of the physics-based operator sy
technology, the preconditioner is easy to construct, uses very little memory, and allows
to employ physics insight at each of the operator split steps.

In one dimension it was demonstrated that the scalar based operator split precondit
was as efficient as the fully coupled Picard based preconditioner. In two dimensions it
demonstrated that the multigrid operator split preconditioning provided a linear solving
pability that scales independent of the grid size. Finally results from a true two-dimensic
problem with interesting physics showed that this solution algorithm behaves well un
difficult conditions (i.e., diffusion coefficients that vary by six orders of magnitude).

It should be noted that in this paper the operator-split preconditioned Newton—Kry
method has only been demonstrated for the non-equilibrium radiation diffusion proble
In another paper [10], we demonstrate this approach on the incompressible Navier-S
equations in stream-function vorticity form. Currently we are adapting this approach
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the shallow water wave equations, the radiation hydrodynamics equations, and the t
netohydrodynamics equations. Progress on this work will be reported in future publi
tions.
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