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An algorithm is presented for the solution of the time dependent reaction-diffusion
systems which arise in non-equilibrium radiation diffusion applications. This system
of nonlinear equations is solved by coupling three numerical methods, Jacobian-free
Newton–Krylov, operator splitting, and multigrid linear solvers. An inexact New-
ton’s method is used to solve the system of nonlinear equations. Since building the
Jacobian matrix for problems of interest can be challenging, we employ a Jacobian–
free implementation of Newton’s method, where the action of the Jacobian matrix
on a vector is approximated by a first order Taylor series expansion.Preconditioned
generalizedminimal residual (PGMRES) is the Krylov method used to solve the lin-
ear systems that come from the iterations of Newton’s method. The preconditioner
in this solution method is constructed using a physics-based divide and conquer ap-
proach, often referred to as operator splitting. This solution procedure inverts the
scalar elliptic systems that make up the preconditioner using simple multigrid meth-
ods. The preconditioner also addresses the strong coupling between equations with
local 2× 2 block solves. The intra-cell coupling is applied after the inter-cell coupling
has already been addressed by the elliptic solves. Results are presented using this
solution procedure that demonstrate its efficiency while incurring minimal memory
requirements. c© 2000 Academic Press
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1. INTRODUCTION

A solution technique for multidimensional non-equilibrium radiation diffusion is pre-
sented. The proposed algorithm couples three methods together to form one solution method.
The three methods are Jacobian-free Newton–Krylov [1], operator splitting [2], and multi-
grid solvers [3, 4]. Each will be discussed in detail below. Each of these methods has their
strengths and weaknesses and this solution method tries to employ the strengths and to
counter the weaknesses.
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This research builds upon earlier studies of Newton–Krylov solutions of the radiation
diffusion equations [5–8]. Developing nonlinearly convergent time integration methods for
non-equilibrium radiation diffusion is a recent endeavor. In [5] a comparison of the Jacobian-
free Newton–Krylov method with a Picard nonlinear iteration was done. It was demonstrated
that the Jacobian–free Newton–Krylov method had superior convergence properties. In [8]
a detailed time step convergence study was done comparing Jacobian–free Newton–Krylov
with a method which does not converge the nonlinearity within a time step (the status
quo in the application field [9]). The results clearly indicate that converging nonlinearities
produced a superior algorithm in terms of efficiency and accuracy. We also mention that
in addition to our work on equilibrium radiation diffusion [6], there has been other recent
work on equilibrium radiation diffusion using multigrid and converging nonlinearities [25].

Although we focus on radiation diffusion, the proposed solution method should also be
applicable to other physical systems where operator splitting is currently used as a solver
such as the Navier–Stokes equations [10].

1.1. Jacobian-free Newton–Krylov method.Newton’s method is used to solve the cou-
pled system of nonlinear equations. In its exact form, Newton’s method provides quadratic
convergence; however, due to approximations that are employed by the solution method in
this paper, super-linear convergence (nearly quadratic) is realized in practice. Historically,
there have been two main obstacles which have prevented people from using Newton’s
method for large scale multi-physics applications. In the following we will try to show how
each obstacle is overcome.

First, an initial guess inside of the radius of convergence is required for Newton’s method
to converge. For steady state problems obtaining a good initial guess can require a significant
investment of work. In transient problems, however, the initial guess is simply the converged
solution from the last time step. If Newton’s method does not converge, by lowering the
time step one can always get the initial guess as close as necessary to the solution at the
next time level. Because of this sensitivity to the initial guess Newton’s method provides an
automatic measurement of the nonlinearity of the problem. In general one would like the
Newton iterations to converge in a small number of iterations. If Newton’s method is taking
a large number of iterations the time step may be too large for accuracy. This automatic
error estimate provides one method to control the time step size in a transient problem.
Therefore, in transient problems getting an initial guess inside of the radius of convergence
of Newton’s method is not a significant concern.

The second obstacle to using Newton’s method for large scale multi-physics simulations
is the formation of the Jacobian matrix. The Jacobian matrix can be a large matrix (rank
equals the number of control volumes times the number of equations and the bandwidth
can get very large depending on the coupling between variables) which may be difficult to
form. Even though forming the Jacobian matrix may be difficult, this approach has been
used successfully for large scale multi-physics steady-state simulations [11, 12]. Depending
on the amount of coupling between equations it may be very difficult to even determine the
structure of the Jacobian matrix. Once you do know the structure, you are then faced with
the task of computing the coefficients. To clarify discussion a brief overview of Newton’s
method will be provided next.

Newton’s method solves the nonlinear system of equations,

F(x) = 0, (1)

whereF is the nonlinear residual function (the discretized system of partial differential
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equations) andx is the state vector. To solve this system, Newton’s method requires the
solution of a series of linear systems of the form

Jkδxk = −F(xk). (2)

HereJ is the Jacobian matrix,δxk is the update to the state vector for thekth nonlinear
iteration, andk is the nonlinear iteration index. Upon the solution of each of these linear
problems the nonlinear iteration is advanced by

xk+1 = xk + dδxk, (3)

whered is a damping parameter used to expand the Newton radius of convergence. This
iteration is continued until

‖F(xk)‖2 < tol1, (4)

wheretol1 is the nonlinear convergence criteria and in these studiestol1= 1.0× 10−5 unless
otherwise noted.

The coefficients of the Jacobian matrix are derivatives of the residual with respect to the
dependent variables,

Jk
i, j =

∂Fi (xk)

∂xk
j

. (5)

For large nonlinear multi-physics systems, computing these coefficients can be difficult.
These derivatives can be computed analytically, or using a algebraic symbolic manipulator,
or numerically. All of these options present challenges.

The solution technique we use provides a way around this problem. In a Krylov linear
solver the solution is built from a linear combination of matrix vector products,

δxk =
l−1∑
j=0

α j J j r0, (6)

wherer0 is the initial residual to the linear problem, theα j ’s are the coefficients constructed
by the Krylov method, andl is the number of Krylov iterations. The important thing to
note is that the Jacobian matrix itself is never needed for the Krylov solution. The only
Jacobian information required in the Krylov solution is the product of the Jacobian matrix
and a vector. This Jacobian-matrix-vector product can be approximated using a first order
Taylor series expansion [5], which results in the approximation [1, 13]

Jv ≈ F(x+ εv)− F(x)
ε

, (7)

wherev is some Krylov vector andε is a small perturbation computed from the equation

ε = b
∑N

i=1 xi

N‖v‖2 , (8)

whereb= 5.0× 10−8 is approximately the square root of machine round-off. The use of
Eq. (7) requires a complete nonlinear residual evaluationF(x+ εv) on each Krylov iteration
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(note,F(x) is already known). Therefore, it is important to keep the number of Krylov
iterations per Newton iteration small for computational efficiency. If the number of Krylov
iterations gets large enough, it will be more efficient to build the Jacobian matrix. As will be
shown under Results, for the transient radiation diffusion, the number of Krylov iterations
per Newton iteration is approximately ten or less.

The two main historical obstacles to using Newton’s method have been addressed by the
proposed algorithm. To get an initial guess inside of the radius of convergence, one has
to simply lower the size of the time step. Instead of building theN× N Jacobian matrix
(whereN is the total number of unknowns) simply approximate its action withN function
evaluations using the Jacobian-free approximation. This approximation of the action of the
Jacobian matrix must be applied on each Krylov iteration.

Additionally, to improve the efficiency of Newton’s method, we use an inexact Newton’s
method [14]. When the Newton iteration is “far” from convergence (i.e., the residual is
“big”) there is no reason to spend a large amount of computer time solving the linear
system accurately. However, when the Newton iteration is “close” (i.e., the residual is
“small”) the convergence rate of Newton’s method is tightly coupled to the accuracy of
the linear solution. To adjust the amount of work done in the linear solve (convergence
tolerance) we employ an inexact Newton’s method. In the inexact Newton’s approach the
convergence criteria for the linear solver is proportional to the residual in the nonlinear
iteration. In equation form this is

‖Jkδxk + F(xk)‖ < tol2‖F(xk)‖, (9)

wheretol2= 1.0× 10−2 is the value used in this study unless otherwise noted.
The Krylov solver used in this solution technique is thepreconditionedgeneralized

minimal residual (PGMRES) method [15]. PGMRES is a non-symmetric solver whose
convergence rate depends on the eigenvalues of the matrix not the matrix structure. Since
we never form the Jacobian matrix, we cannot employ a solver which depends on a matrix
structure that we may not know. Another advantage of PGMRES is that its residuals are
monotonically decreasing. This means that on each iteration the error gets smaller (measured
in an appropriate norm). A third advantage of PGMRES, which is important to the use of
the Jacobian-free approximation, is that it normalizes the size of the Krylov vectors which it
uses. Since the error in the Taylor series expansion (Eq. (7)) is proportional to the size of the
Krylov vector (v), the Jacobian-free approximation works well with PGMRES where the
Krylov vectors are of size unity. Another motivation for keeping the number of PGMRES
iterations small is evident in Eq. (6). Since each new Krylov vector is orthogonal to all of
the previous Krylov vectors, the amount of work required to find a new vector increases
with the number of Krylov iterations.

The drawback to using PGMRES is that it requires the storage of one additional Krylov
vector (which is the same size as a state vector) per Krylov iteration. It is this property which
enables PGMRES to obtain its monotonic error reduction for non-symmetric systems. The
impact on the solution algorithm is that the storage requirement isM N whereM is the
maximum number of Krylov iterations required to converge.

There is an approach called restarting which tries to keep the amount of storage for
PGMRES constant. In this strategy the number of Krylov vectors is fixed and the linear
iteration is restarted when the fixed dimension of the Krylov subspace has been reached.
This approach minimizes the memory requirements, but does not ensure the monotonically
decreasing residuals or even convergence.
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If the restarting strategy is not employed, to keep the Krylov vector storage require-
ment from becoming impractical, one has to keep the number of Krylov iterations low.
This is accomplished by preconditioning the system. Preconditioning is a process which
approximates the inverse of the Jacobian matrix (JP−1≈ I ). Now instead of solving

Jδx = −F(x), (10)

one solves the system

JP−1Pδx = −F(x). (11)

Since PGMRES works on the number of unique eigenvalues of the system, if the new system
JP−1 has most of it eigenvalues clustered around one, then PGMRES will need very few
iterations to reach convergence. Therefore, the problem of using PGMRES, which is the
storage of the Krylov vectors, can be minimized by using an effective preconditioner.

1.2. Operator split (fractional time step, alternating block factorization) precondition-
ing. If one had the Jacobian matrix built, an obvious choice for a preconditioner is an
approximate inverse of the Jacobian. Since we do not wish to build the Jacobian matrix, we
can be more creative in our construction of the preconditioner. One of the motivations for
preconditioning the system is to save memory by reducing the number of Krylov vectors
that need to be stored. Therefore, it is important that the preconditioning process itself is
not memory intensive.

Before further discussion, one needs to define two terms for clarity. In the following
discussions “coupled systems” will refer to matrices which have an order equal to the number
of equations per control volume times the number of control volumes. “Scalar equations”
will refer to systems which have an order equal to the number of control volumes.

One approach to producing a preconditioner that is not memory intensive is to employ a
numerical technique which was developed when computer memories were relatively small
and computers were relatively slow. In the early days of computational physics the numerical
technique of operator splitting [2] (or fractional time step methods [16] or alternate-block
factorization [17]) was the main work horse for the solution of coupled systems. This
approach reduces the memory requirements and the computational complexity of solving
a system of equations. This is accomplished by solving each scalar equation independently
on the entire grid and then coupling these solutions back together to get the solution to the
larger coupled system.

For example, if one has a system withn control volumes andm equations per control
volume (N=mn) the total system size ismn×mn. The storage required for this system
is mnL where L is the number of nonzero diagonals for the largemn×mn system of
equations. Assuming a lexicographical ordering of the unknowns, the number of nonzero
diagonals is the number of variables touched by the stencil (i.e., approximately equal to the
number of variables per cell times the number of cells in the differencing stencil). However,
if you solve the systems one equation at a time your storage requirements arenl wherel ≤ L
is the number of nonzero diagonals in each of them smallern× n systems. This memory
reduction is realized since the same memory locations can be used to solve each of them
equations. One can see that the memory savings ism(L/ l ).

Since the amount of work required to solve a system scales greater than linearly with the
size of the system, one can clearly see that the work for one large system is proportional to
(mnL)α whereα >1 is the exponential power for solving systems. The work for solving
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them smaller systems is proportional tom(nl)α. This results in a computation complexity
reduction ofm(α−1)(L/ l )α. For the one-dimensional studies presented laterm= 2 and
n= 50 orn= 200.

The exact details of how to construct the operator split preconditioner will be shown in
a later section. The basic idea however is to:

1. Employ a simple Picard linearization to linearize the the nonlinear discretized sys-
tem of partial differential equations.

2. Order the equations so that there is adequate coupling between them.
3. Solve the equations one at a time using the most recent value of variables available.

Physics-based preconditioning is the application of this idea as a preconditioner in a
Newton–Krylov method and refers to the splitting of the solution process based on different
types of physics (e.g., transport-diffusion physics versus equilibration-reaction physics).

As solution techniques, thesesingle-stepoperator split methods are often robust but are
only as accurate as the linearization approximations. When used as a solver, thesingle-
stepoperator split algorithms must take time steps small enough to keep the linearization
approximations “accurate.” Since the nonlinear residuals [(F(x)] are never formed, the true
accuracy of the solution is never measured as part of the solution procedure.

It should be noted that operator split algorithms can also be applied in an iterative,multi-
stepfashion as a solver or as a multigrid smoother. When employed in this fashion, operator
splitting may not be robust since convergence is not guaranteed. As a preconditioner, how-
ever, the outer Newton iteration handles the nonlinear error so the operator split algorithm
can be used at larger time steps. By using operator splitting as a preconditioner, we take
advantage of its reduction in memory requirements and its reduction in computational com-
plexity, but we are not forced to take the small time steps required for accuracy since the
Newton iteration significantly improves the accuracy of the problem for a given time step
[5]. Therefore, when an operator split algorithm is used as a preconditioner for Newton–
Krylov, Newton–Krylov can be considered to be an accelerator of the convergence of the
operator split method.

1.3. Multigrid. In the current application, the operator split algorithm produces a set
of linear, elliptic, scalar equations that need to be solved. The multigrid technique was
initially designed for use on scalar elliptic equations so it is an obvious choice to use as a
solver. However, because the system is so small in the one-dimensional problem, a simple
symmetric Gauss Seidel iteration is used. For the two-dimensional problems the multigrid
method is used as a solver. The algorithmic scaling of the multigrid method makes it an
attractive choice for a preconditioner since one can get solutions to large problems quickly.

The multigrid preconditioner used in this study was developed in [18]: The restriction and
prolongation operators employed here are piecewise constant and a variational coarse grid
operator is used. Although these choices may not be optimal for multigrid as a solver, we
have found it to be an acceptable approach when using multigrid as a preconditioner. There
are three advantages to choosing piecewise constant prolongation and restriction operators.

1. They are the easiest to implement.
2. They do not have difficulties with irregular meshes.
3. They are simple to implement as a two-level solver in parallel [19] since they

minimize communication costs.

The multigrid preconditioner uses a simple “V” cycle and incorporates symmetric Gauss
Seidel as a smoother. From our experience, we have not seen the advantage in CPU time
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reduction from using more advanced multigrid strategies. Since PGMRES is the linear
equation solver and the equations used in the preconditioner are not the same as the equations
being solved, it is not clear that there is an advantage to using more accurate linear solvers
in the preconditioner. Implementing more sophisticated multigrid strategies and measuring
their effects on CPU time and convergence is an area of future research.

In this solution technique, Newton’s method handles the nonlinearities and the Krylov
solver handles the coupled systems. We are applying the multigrid algorithm in the precon-
ditioner where the problem has already been broken up into linear, elliptic, scalar pieces by
operator splitting. Therefore, in this solution technique, multigrid is applied in situations
where its algorithm is near optimal.

2. PHYSICS MODEL

The following coupled system for radiation energy,E, and material temperature,T ,
will be solved using the solution technique of this paper. These equations represent an
idealization of non-equilibrium radiation diffusion in a material [2, 5, 6, 9, 20, 21],

radiation diffusion (gray approximation),

∂E

∂t
−∇ · (Dr∇E) = σa(T

4− E); (12)

material energy balance,

∂T

∂t
−∇ · (Dt∇T) = −σa(T

4− E). (13)

Hereσa is the photon absorption cross-section. In thermal equilibrium we haveE= T4,
and for the non-equilibrium case one can define a radiation temperature asTr = (E)0.25. We
will choose

σa = z3

T3
, (14)

wherez is the atomic mass number and we use the following form for the radiation diffusion
coefficient,

Dr (T) = 1

3σa
. (15)

However, in regions of strong gradients, simple diffusion theory can fail, resulting in a
flux of energy moving faster than the speed of light. To prevent this artificial behavior,
the diffusion coefficient is augmented in the following heuristic fashion, referred to as flux
limiting [2],

Dr (T, E) = 1

(3σa + (1/E)|∂E/∂x|) . (16)

The following form of the material (plasma) conduction diffusion coefficient from Spitzer
and Harm [22] is used,

Dt (T) = kT5/2, (17)

wherek is a constant.
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3. DEVELOPMENT OF AN OPERATOR SPLIT (PHYSICS BASED) PRECONDITIONER

Since the operator split method is a proven solver, it seems obvious that it might be a
good preconditioner. To describe the operator split solution method we will work with the
one-dimensional version of the problem,

∂E

∂t
− ∂

∂x

(
Dr
∂E

∂x

)
= σa(T

4− E) (18)

∂T

∂t
− ∂

∂x

(
Dt
∂T

∂x

)
= −σa(T

4− E). (19)

For simplicity we assume constant spacing and define the following dependencies between
the diffusion coefficients and the photon absorption cross section,

Dn+1
r,i+1/2 = Dr

(
En+1

i+1/2, T
n+1

i+1/2

)
(20)

Dn+1
t,i+1/2 = Dt

(
Tn+1

i+1/2

)
(21)

σ n+1
a,i = σa

(
Tn+1

i

)
. (22)

Here the superscriptn+ 1 indicates a new time or implicit value and the subscripti denotes
a control volume centered quantity and the subscripti + 1/2 denotes a control volume face
quantity. Then the fully implicit, fully nonlinear, finite difference forms of Eqs. (18) and
(19) are

En+1
i − En

i

1t
−
[

Dn+1
r,i+1/2

(
En+1

i+1 − En+1
i

1x2

)
− Dn+1

r,i−1/2

(
En+1

i − En+1
i−1

1x2

)]
− σ n+1

a,i

[(
Tn+1

i

)4− En+1
i

] = 0 (23)

Tn+1
i − Tn

i

1t
−
[

Dn+1
t,i+1/2

(
Tn+1

i+1 − Tn+1
i

1x2

)
− Dn+1

t,i−1/2

(
Tn+1

i − Tn+1
i−1

1x2

)]
+ σ n+1

a,i

[(
Tn+1

i

)4− En+1
i

] = 0. (24)

The first step in our operator split method is to apply a Picard linearization to the nonlinear
equations. We linearize Eqs. (23) and (24) by evaluatingDr , Dt , andσa at old time values
and by linearizing(Tn+1)4 as(Tn)3Tn+1 to get

En+1
i − En

i

1t
−
[

Dn
r,i+1/2

(
En+1

i+1 − En+1
i

1x2

)
− Dn

r,i−1/2

(
En+1

i − En+1
i−1

1x2

)]
− σ n

a,i

[(
Tn

i

)3
Tn+1

i − En+1
i

] = 0 (25)

Tn+1
i − Tn

i

1t
−
[

Dn
t,i+1/2

(
Tn+1

i+1 − Tn+1
i

1x2

)
− Dn

t,i−1/2

(
Tn+1

i − Tn+1
i−1

1x2

)]
+ σ n

a,i

[(
Tn

i

)3
Tn+1

i − En+1
i

] = 0. (26)

These are the linearly implicit, discrete equations. Under Results the operator split precon-
ditioner will be compared to a Picard preconditioner. The Picard preconditioner solves the
couple system of Eqs. (25) and (26) with a block symmetric Gauss Seidel iteration. These
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equations will next be used to develop the operator splitting approach as a solver and as a
preconditioner.

3.1. Operator splitting as a solver.To demonstrate how to use operator splitting as a
preconditioner, we will first show how to use it as a solver. This step is done first since many
readers have already used operator splitting as a solver. Operator splitting solves the coupled
system in a two step process. First the system is linearized using the Picard linearization
yielding a coupled linear system. Then this coupled system is broken up into three separate
pieces (radiation diffusion, material heat conduction, and energy exchange coupling).

The first step in our physics-based operator split algorithm is to solve the radiation trans-
port (diffusion) physics of Eq. (18),

∂E

∂t
− ∂

∂x

(
Dr
∂E

∂x

)
= 0. (27)

The resulting finite difference form of Eq. (27) is taken from Eq. (25),

E∗i − En
i

1t
−
{

Dn
r,i+1/2

E∗i+1−E∗i
1x − Dn

r,i−1/2
E∗i −E∗i−1

1x

1x

}
= 0. (28)

Here we have defined an intermediate energy levelE∗.
The second step in our physics-based operator split algorithm is to solve the material

thermal transport (diffusion) physics of Eq. (19),

∂T

∂t
− ∂

∂x

(
Dt
∂T

∂x

)
= 0. (29)

The discretized form of Eq. (29) comes from Eq. (26),

T∗i − Tn
i

1t
−
{

Dn
t,i+1/2((T

∗
i+1− T∗i )/1x)− Dn

t,i−1/2((T
∗

i − T∗i−1)/1x)

1x

}
= 0. (30)

HereT∗ is an intermediate material temperature level.
The third and final step in our physics-based operator split algorithm is to solve the

equilibration radiation coupling (reaction) physics from Eqs. (18) and (19),

∂E

∂t
= σa(T

4− E) (31)

∂T

∂t
= −σa(T

4− E). (32)

This results in a coupled 2× 2 matrix for each control volume. The discretized equations
which make up the 2× 2 systems are parts of Eqs. (25) and (26). The discrete equations are

En+1
i − E∗i
1t

= σ n
a,i

((
Tn

i

)3
Tn+1

i − En+1
i

)
(33)

Tn+1
i − T∗i
1t

= −σ n
a,i

((
Tn

i

)3
Tn+1

i − En+1
i

)
. (34)

As a solver, our operator split solution algorithm follows:

1. Solve Eq. (28) forE∗.
2. Solve Eq. (30) forT∗.
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3. Substitute the values forE∗ andT∗ into Eqs. (33) and (34).
4. Solve the resulting 2× 2 system on each control volume to getEn+1 andTn+1.

Next we will express the operator split solution algorithm in matrix notation. This will be
necessary when discussing the operator split procedure as a preconditioner. We can rewrite
Eq. (28), which is step one in our solution scheme, in matrix form as

P1E∗ = En

1t
. (35)

It is important to note that the linear operatorP1 is of ordern. Equation (30) (the second
step in the solution algorithm) can be expressed in matrix form as

P2T∗ = Tn

1t
. (36)

The same as forP1 the linear operatorP2 is of ordern. Equations (33) and (34) (steps 3 and
4 of the solution scheme) can be represented as the following block 2× 2 diagonal matrix
equation,

P3

(
En+1

Tn+1

)
=
( E∗
1t

T∗
1t

)
. (37)

As opposed to the scalar operatorsP1 andP2 the coupled linear operatorP3 is of order
2n. The operatorP3 is applied cumulatively to correct the error associated with the strong
coupling within a cell whichP1 andP2 did not address. By solving theP1 system (Eq. (35))
for E∗ and theP2 system (Eq. (36)) forT∗ and substituting into theP3 system (Eq. (37))
we get [

P1 0

0 P2

]
1tP3

(
En+1

Tn+1

)
=
( En

1t

Tn

1t

)
. (38)

If we defineO by

O =
[
P1 0

0 P2

]
1tP3, (39)

we can then write our operator split method in matrix form as

O
(

En+1

Tn+1

)
=
(En

1t

Tn

1t

)
. (40)

3.2. Operator split in incremental form.We will now explain how to get our operator
split solution method into the correct form for use as a preconditioner. Recall the base
equation for Newton’s method,

Jkδxk = −F(xk). (41)

This equation is solved forδxk and then the solution is advanced by

xk+1 = xk + dδxk. (42)
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Therefore, one can see that Newton’s method solves for the change inx from nonlinear
iterationk to k+ 1. However, when used as a solver, our operator split method solved for
the new time value (xn+1), not the change inx from time leveln to n+ 1. Therefore, one
has to rework the normal operator split method into incremental form so it can be used as
a preconditioner for Newton’s method.

The first step in converting our operator split algorithm into incremental form is to define
the residual functions for use in Newton’s method. From the fully implicit, fully nonlinear,
finite difference form (Eqs. (23) and (24)) we can define the residual functions

FE(E,T ) = Ei − En
i

1t
−
[

Dr
(
Ei+1/2, Ti+1/2

)(Ei+1− Ei

1x2

)
− Dr

(
Ei−1/2, Ti−1/2

)(Ei − Ei−1

1x2

)]
− σa(Ti )

[
(Ti )

4− En+1
i

]
(43)

FT(E,T ) = Ti − Tn
i

1t
−
[

Dt
(
Ti+1/2

)(Ti+1− Ti

1x2

)
− Dt

(
Ti−1/2

)(Ti − Ti−1

1x2

)]
+ σa(Ti )[(Ti )

4− Ei ], (44)

whereE andT are dummy radiation energy and dummy material temperature, respectively.
It is now important to note that

FE(En,Tn) = −
[

Dn
r,i+1/2

(
En

i+1− En
i

1x2

)
− Dn

r,i−1/2

(
En

i − En
i−1

1x2

)]
− σ n

a,i

[(
Tn

i

)4− En
i

]
(45)

FT(En,Tn) = −
[

Dn
t,i+1/2

(
Tn

i+1− Tn
i

1x2

)
− Dn

t,i−1/2

(
Tn

i − Tn
i−1

1x2

)]
+ σ n

a,i

[(
Tn

i

)4− En
i

]
. (46)

These residuals,FE(En,Tn) andFT(En,Tn), will be important and will come up in the
future.

First, we will make the definitions

δEi = En+1
i − En

i (47)

δTi = Tn+1
i − Tn

i . (48)

Then, recalling the definitions of the residuals (Eqs. (45) and (46)), we can rewrite Eqs. (25)
and (26) in incremental form to get

δEi

1t
−
[

Dn
r,i+1/2

(
δEi+1− δEi

1x2

)
− Dn

r,i−1/2

(
δEi − δEi−1

1x2

)]
− σ n

a,i

[(
Tn

i

)3
δTi − δEi

] = −FE(En,Tn) (49)

δTi

1t
−
[

Dn
t,i+1/2

(
δTi+1− δTi

1x2

)
− Dn

t,i−1/2

(
δTi − δTi−1

1x2

)]
+ σ n

a,i

[(
Tn

i

)3
δTi − δEi

] = −FT(En,Tn). (50)
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From the definition ofO in Eq. (39), it is easy to see that Eqs. (49) and (50) can be rewritten
in matrix form as

O
(
δE

δT

)
=
(−FE(En,Tn)

−FT(En,Tn)

)
. (51)

Also, it is clear that we now have the operator split preconditioner in the same form as the
Newton iteration matrix,

Jδx = −F(x), (52)

which makes it trivial to apply as a preconditioner as is demonstrated below.

3.3. Operator split preconditioner implementation.Now that we have the operator split
solver in the same form as the Newton iteration, we can proceed to use the operator split
algorithm as a preconditioner. There are slight modifications that need to be implemented to
use the algorithm as a preconditioner. First, the right hand side (i.e., the residuals evaluated
at old time values) is not constructed. The right hand side is now provided by the Krylov
solver and is a Krylov vector instead of a residual vector. Second, instead of using the old
time values (En andTn) to evaluate the matrix elements inP1, P2, andP3, these coefficients
are now constructed from the latest nonlinear iterate value (Ek and Tk). The following
describes in detail how the preconditioner is implemented.

Recall the definition of right preconditioning (Eq. (11)), but now replace the generic
preconditionerP with the operator split preconditionerO to get

JO−1Oδx = −F(x). (53)

Definez=Oδx and we can rewrite Eq. (53) as

JO−1z= −F(x). (54)

To solve the above system, we need to compute the action of the matrixJO−1 on a Krylov
vectorv,

w = JO−1v. (55)

Computationally this is done in a two step procedure.

1. SolveOq= v for q (using Eq. (51)).
2. Computew= Jq using the Jacobian-free approximation,

Jq ≈ F(x+ εq)− F(x)
ε

. (56)

This procedure is used each time the action of the Jacobian matrix is needed. After the
Krylov method has converged on a solution forz, the last step is to solve

Oδx = z, (57)

for δx. Now that we have described how to construct and implement the operator split
preconditioner, we will demonstrate its performance.
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4. RESULTS

The operator split preconditioner will now be demonstrated on three separate test prob-
lems.

1. The one-dimensional problem that was used to demonstrate the construction of the
operator split preconditioner. In this section the operator split preconditioner will be com-
pared to the coupled Picard based preconditioner. Results will show that the two approaches
behave similarly.

2. A two-dimensional problem with the same one-dimensional physics as the one-
dimensional problem. This problem will be used to demonstrate the scalability of the oper-
ator split preconditioner. Results will show that the method scales very well with problem
size.

3. A two-dimensional problem with two-dimensional physics. This problem was cho-
sen to demonstrate the two-dimensional capability of the solution method. By making the
atomic number,z, a function ofx andy we were able to create a region with a lower radia-
tion diffusion coefficient. By modifying the ratio of high to low atomic number in the two
dimensional “blockage” we were also able to demonstrate how the method behaves when
faced with a strong spatial dependence of the radiation diffusion coefficient. Results show
that the method works just as well in two dimensions as it did in one dimension. Results
also demonstrate that as the discontinuities in the matrix coefficients become large (caused
by the blockage), the effectiveness of the preconditioner is negatively impacted.

It is of some interest to compare the solution based on the Picard linearized coupled
system to the nonlinear Newton–Krylov approach. In general, as the problem becomes
more nonlinear and as the required accuracy is tightened, the Newton–Krylov method
outperforms the Picard method. For more detailed results see [5].

4.1. Problem 1: One-dimensional.The model problem considered in this study is taken
from [5, 23] and consists of a unit radiation flux impinging on an initially cold slab of unit
depth. This results in mixed, or Robin, boundary conditions for the radiation equations at
x= 0 andx= 1. Following [24], atx= 0 we use

1

4
E − 1

6σa

∂E

∂x
= 1, (58)

and atx= 1 we use

1

4
E + 1

6σa

∂E

∂x
= 0. (59)

For the material diffusion equation the boundary conditions are simply∂T
∂x = 0 at x= 0

and x= 1. The initial energy isE0= 1.0× 10−5 and the initial material temperature is
T0= (E0)

1/4≈ 5.62× 10−2. The atomic numberz is constant and equal to 1.0 everywhere.
The simulation runs for three units of time (timef = 3.0).

The first set of results show the effect of the diffusion coefficient on the solution to the
problem (see Fig. 1). Here the constantk is varied in Eq. (17) to show the effect that material
conduction has on the solution. It is clear that an increase in the material diffusion coefficient
causes the thermal front to move faster. Note that the material temperature never exceeds
the radiation temperature.
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FIG. 1. Effects of thermal diffusion.

In the following, a comparison is made between the Picard preconditioner and the operator
split preconditioner for different thermal wave CFL numbers [7]. The basic idea of a thermal
wave CFL number is to assign a wave speed to the thermal wave and then base a CFL number
on this wave speed. For example, if the CFL number is one, the thermal wave crosses a
computational grid cell in one time step. For a thermal wave CFL number of 0.1, the thermal
wave takes ten time steps to cross a computational cell. We are using a fixed time step plus
a time step ramp which brings the initial time step up to the fixed value in a small number
of time steps. The ramp helps the calculation through the initial startup of the simulation.
Because of this ramp and the changing velocity of the thermal wave front, the statement of
CFL is an asymptotic approximation.

To compare different approaches we partition the computational work into the pieces.

WORK∝ N × timef

1t
× time step× Newton

time step
× PGMRES

Newton
. (60)

In this equation, final time (timef ) is usually fixed by the problem definition so the numbers
of interest are the number of unknowns (recallN= nm, wheren is the number of cells and
m is the number of equations per control volume), time step size (1t), Newton iterations per
time step (Newton

time step), and PGMRES iterations per Newton iteration (PGMRES
Newton ). In this paper all

CPU times are presented as seconds of silicon graphics incorporated, octane computer time.
Table I shows a comparison of the operator split preconditioner to the Picard based pre-

conditioner for a problem with fifty control volumes. In the Picard based preconditioner
the linearized coupled system (Eqs. (26) and (25)) is solved using a 2× 2 block symmetric
Gauss Seidel iteration. The complexity and the storage requirement for the Picard linearized
preconditioner (which is already smaller and simpler that a true Jacobian based precondi-
tioner) is higher than the operator split based preconditioner, but one can see from Table I
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TABLE I

Operator Split vs Picard for n = 50

Picard Operator split

Problem Newton
time step

PGMRES
Newton

CPU Newton
time step

PGMRES
Newton

CPU

k= 0.0 CFL= 0.1 2.379 2.845 0.9 2.403 3.456 1.1
k= 0.0 CFL= 1.0 4.678 6.725 0.4 4.750 7.390 0.4
k= 0.1 CFL= 0.1 2.088 2.586 1.0 2.117 3.337 1.1
k= 0.1 CFL= 1.0 4.160 5.403 0.3 4.160 5.978 0.4

that even as the thermal diffusion coefficient is varied and the CFL numbered is varied the
two methods perform almost identically.

In Table I, one can clearly see that increasing the nonlinearity of the problem, by raising
the time step size an order of magnitude (CFL from 0.1 to 1.0), approximately doubles the
number of Newton iterations per time step and also approximately doubles the number of
PGMRES iterations per Newton iteration. This indicates that both the nonlinear and the
linear problems are more difficult when the time step is increased.

It should be noted here that the predicted run time speed-up of the operator split precondi-
tioner was not realized in this study. This may be simply because the run time analysis was
asymptotic and the one-dimensional runs done here were too small to show the asymptotic
behavior. It also may be that the second step of the preconditioner implementation (the
action of the Jacobianw= Jq) may be using a significant amount of CPU time relative to
the CPU time required to evaluate the action of the preconditioner (Oq= v).

The effect of changing the material diffusion coefficient in Table I is similar. Here in-
creasing the material diffusion coefficient both lowers the number of nonlinear iterations
( Newton

time step) and the number of linear iterations (PGMRES
Newton ).

In Table II the same study is repeated for a grid which is four times as large. One observes
that the performance of the methods (measured by the number of Newton iterations per
time step and the number of PGMRES iterations per Newton iteration) is very similar.
Once again increasing the CFL number increases both the linear and nonlinear iterations.
However, increasing the material diffusion clearly lowers the nonlinear iterations, but there
is now no longer a clear trend in the linear iterations.

4.2. Problem 2: Two-dimensional with one-dimensional simulation.The test problem
for this subsection is similar to the one-dimensional problem. The computational domain
ranges from 0≤ x≤ 1 and 0≤ y≤ 1. The boundary condition for the radiation equation at

TABLE II

Operator Split vs Picard for n = 200

Picard Operator split

Problem Newton
time step

PGMRES
Newton

CPU Newton
time step

PGMRES
Newton

CPU

k= 0.0 CFL= 0.1 2.057 3.825 14.4 2.053 4.115 16.0
k= 0.0 CFL= 1.0 5.136 10.341 7.5 5.499 9.990 8.4
k= 0.1 CFL= 0.1 2.009 4.225 18.5 2.008 4.603 20.4
k= 0.1 CFL= 1.0 3.727 9.708 6.2 3.687 9.018 6.1
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the left boundary(x= 0, y∈ [0, 1]) is

1

4
E − 1

6σa

∂E

∂x
= 1. (61)

At the right boundary (x= 1, y∈ [0, 1]) we use

1

4
E + 1

6σa

∂E

∂x
= 0. (62)

At the top and bottom boundaries (y= 0 or y= 1, x ∈ [0, 1]) the boundary conditions are

∂E

∂y
= 0. (63)

For the material conduction equation the top and bottom boundaries are

∂T

∂y
= 0, (64)

and the left and right boundaries are

∂T

∂x
= 0. (65)

The initial conditions are the same as in the one-dimensional runs, the initial energy is
E0= 1.0× 10−5, and the initial material temperature isT0= (E0)

1
4 ≈ 5.62× 10−2. The

atomic numberz is constant andz= 1.0 everywhere. The two-dimensional simulation also
runs for three units of time (timef = 3.0).

Figure 2 shows a contour plot of the material temperature at time equal to three. From this
plot one can see the step gradient nearx= 0.8. Also, the zero gradient boundary conditions
in both the radiation and material conduction equations is evident in the straight vertical
lines of constant temperature.

FIG. 2. Material temperature.
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TABLE III

Grid Convergence Study CFL≈ 0.1

Grid 1t Newton
time step

PGMRES
Newton

CPU

32× 32 1.2e−2 2.008 4.691 29.1
64× 64 6.0e−3 1.981 4.819 366.5

128× 128 3.0e−3 1.392 4.948 2356.5
256× 256 1.5e−3 1.016 4.966 15917.0

Table III shows a mesh convergence study for this one-dimensional problem solved in
two dimensions. In this study the thermal wave CFL number is held approximately equal
to 0.1 by cutting the time step (1t) in half each time the mesh spacing is cut in half. In
Table III one can see that the number of Newton iterations per time step falls throughout the
mesh refinement. Simultaneously, the number of PGMRES iterations per Newton iteration
is approximately constant (slightly increasing). This results in a total run time which scales
by slightly less than eight. (Note: this scaling does not hold for the coarsest mesh case. This
may be because of cache effects which artificially speed up the smaller problem.) If the
amount of work is constant (i.e., the same number of Newton iterations per time step and the
same number of PGMRES iterations per Newton iteration) the CPU time will scale roughly
by eight (two for the increase in thex direction, two for the increase in they direction, and
two for the halving of the time step).

Table IV shows similar results for the CFL≈ 0.5 case. Comparing Tables III and IV
one can see that increasing the time step by a factor of five increased the nonlinearity
(as evidenced by the increase in the number of Newton iterations per time step). Also the
number of PGMRES iterations per Newton iteration increased from approximately five to
approximately nine. However, the trends in Table IV are identical to Table III. The PGMRES
iterations per Newton do not increase with grid size and the total amount of CPU time scales
slightly less than a theoretical value of eight (again ignoring the first grid).

Figure 3 shows the Mesh convergence results for a one-dimensional slice taken down the
middle of the two-dimensional domain. The plot shows the Radiation temperature at time
3.0 for four different grids. Two observations can be made from this plot. First, it is clear
that the solution is converging upon mesh refinement. Second, one can see that the gradient
aroundx= 0.8 gets steeper with the mesh refinement. For the 32× 32 grid problem, the
simulation has difficulties resolving the steep gradient at the thermal wave front. This and
cache effects may explain why the CPU time scaling does not hold for the first grid. In
Table V, one can see the L-2 norm of the distance between the material temperatures for
the coarser grids and the 256× 256 grid. Here the ratio of the error terms is slightly less
than the theoretical value of four (second order in space and half the grid size). This may be

TABLE IV

Grid Convergence Study CFL≈ 0.5

Grid 1t Newton
time step

PGMRES
Newton

CPU

32× 32 6.0e−2 3.352 8.921 20.3
64× 64 3.0e−2 3.214 9.092 282.5

128× 128 1.5e−2 2.755 9.092 1973.3
256× 256 7.5e−3 2.151 9.094 13893.3
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FIG. 3. Radiation temperature mesh convergence.

related to the temporal error term which is first order so the overall theoretical value would
be two. The convergence analysis of the data is done for the material temperature instead
of the radiation temperature since the material temperature has a smoother profile.

4.3. Problem 3: Two-dimensional with two-dimensional simulation.To clearly demon-
strate the two-dimensional capability of this solution scheme, a second two-dimensional
problem is constructed. In this problem, the initial conditions, the boundary conditions, and
the total run time are exactly the same as in the first two-dimensional run. However, there
is now a region in the simulation where the atomic numberz is not equal to one. More
precisely,

z=
{

5.0 if 1
3 ≤ x ≤ 2

3 and 1
3 ≤ y ≤ 2

3

1.0 otherwise.
(66)

Table VI shows the solution algorithm performance under mesh refinement for the base
two-dimensional geometry problem. In Table VI one can see that the number of Newton
iterations per time step decreases the same as in the one-dimensional test problem. However,
instead of the flat number of PGMRES per Newton iterations that was clear in the one-
dimensional test problem, the number of PGMRES iterations per Newton iteration actually

TABLE V

Material Temperature Mesh Convergence

Grids Error‖1T‖2 Ratio

32-256 0.6992 NA
64-256 0.1997 3.50

128-256 0.0524 3.81
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TABLE VI

Grid Convergence Study CFL≈ 0.1

Grid 1t Newton
time step

PGMRES
Newton

CPU

32× 32 1.2e−2 1.991 4.684 22.3
64× 64 6.0e−3 1.185 4.339 152.0

128× 128 3.0e−3 1.001 3.890 1074.9
256× 256 1.5e−3 1.000 3.720 11550.6

decreases. It should be noted here that there is a slight discrepancy in the timing data.
Because of the initial strength of the transient (full energy being added to a cold material), the
time steps for these simulations start out small and are then ramped up to their maximum
time step size. This ramp takes place over approximately fifty time steps. The statistics for
the average Newton iterations per time step and the average PGMRES iterations per Newton
iteration do not include the work that is done on the time step ramp. However, the CPU
time information includes the work done during the ramping of the time step. Looking at
the CPU time for the 256× 256 run in Table VI, one can see that even though the number of
Newton iterations per time step goes down as does the number of PGMRES iterations per
Newton iteration, the increase in run time is greater than the theoretical value of eight. This
anomaly appears to be associated with the amount of work necessary to get the simulation
through the initial transient.

To understand this data one must consider two important gradients that need to be resolved
in this problem. The first one has no physical meaning and is simply an effect of the
discretization. In the boundary conditions for this problem, the energy flux into the left wall
is constant. The initial condition for this problem is the material is initially cold. Therefore,
under mesh refinement the initial constant energy flux is being imparted into a smaller and
smaller initially cold cell. This makes the start of the problem more difficult as the mesh
spacing is decreased.

The second gradient which is important to consider is the gradient in the diffusion coeffi-
cient. From Eqs. (14) and (15) one can see thatDr is proportional toT andz or in equation
form,

Dr ∝ T3

z3
. (67)

The temperature across the interface at the thermal wave front drops by about a factor of
ten. If the atomic number varies by a factor of ten between two different materials (as is the
case in Fig. 4) the total change in diffusion coefficient (if these two differences occur at
the same location) will be (103)2= 106. This is clearly evident in Fig. 4 where the contours
of log10 of constant diffusion coefficient vary from−1 in the “hot” low z area to−7 in
the “cold” high z area. Here the diffusion coefficient varies over six orders of magnitude
in a very small spatial distance. Therefore, as the mesh is refined the ability to resolve this
six order of magnitude drop improves. This may be the explanation for why the number of
PGMRES iterations per Newton iteration decreases for this problem.

To investigate this phenomenon further the data in Table VII were generated. For this
study the effects of grid spacing are removed by fixing the mesh at 128× 128. In Table VII
one can now see clearly that as the gradient in diffusion coefficients steepens (thez ratio
increases) the amount of work that PGMRES requires to solve the linear system increases.
This is illustrated in Figs. 5 and 6.



TABLE VII

Atomic Number Study CFL ≈ 0.1 Grid 128× 128∆t = 3.0× 10−3

Z number Z3 Newton
time step

PGMRES
Newton

CPU

1.25 1.95 1.001 3.316 1063.4
2.5 15.62 1.001 3.368 1084.6
5.0 125.00 1.001 3.890 1072.5
7.5 421.87 1.001 5.157 1760.6

10.0 1000.00 1.001 11.846 3933.2

FIG. 4. The log10 of the diffusion coefficient;z number ratio= 10.0.

FIG. 5. Material temperature;z number ratio= 2.5.

762
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FIG. 6. Material temperature;z number ratio= 10.0.

In Fig. 5 one can see the material temperature contours for thez number ratio of 2.5. A
z ratio of 2.5 results in a diffusion coefficient difference of (2.5)3= 15.625. In this run, the
high z material slows the the thermal wave but the actual shape of the highz square is not
evident.

In Fig. 6 thez ratio is increased to 10. The difference in the diffusion coefficient for
this case is (10)3= 1000. Here the thermal wave front is radically slowed which causes an
additional steepening of the diffusion coefficients due to the sharp thermal gradients.

5. CONCLUSIONS

A physics-based preconditioning approach based on operator splitting has been described.
This approach allows one to use well developed technology to construct a preconditioner
for a fully coupled, fully implicit, solution. Because of the physics-based operator split
technology, the preconditioner is easy to construct, uses very little memory, and allows one
to employ physics insight at each of the operator split steps.

In one dimension it was demonstrated that the scalar based operator split preconditioner
was as efficient as the fully coupled Picard based preconditioner. In two dimensions it was
demonstrated that the multigrid operator split preconditioning provided a linear solving ca-
pability that scales independent of the grid size. Finally results from a true two-dimensional
problem with interesting physics showed that this solution algorithm behaves well under
difficult conditions (i.e., diffusion coefficients that vary by six orders of magnitude).

It should be noted that in this paper the operator-split preconditioned Newton–Krylov
method has only been demonstrated for the non-equilibrium radiation diffusion problem.
In another paper [10], we demonstrate this approach on the incompressible Navier–Stokes
equations in stream-function vorticity form. Currently we are adapting this approach to
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the shallow water wave equations, the radiation hydrodynamics equations, and the mag-
netohydrodynamics equations. Progress on this work will be reported in future publica-
tions.
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